§1. Real numbers
\$1.1 Introduction
most basic idea: counting!

$$
1,2,3,4,5, \ldots
$$

\rightarrow denote by letter \mathbb{N} :

$$
\mathbb{N}=\{1,2,3,4, \ldots\}
$$

special numbers: prime numbers

$$
\begin{aligned}
15 & =3 \cdot 5 \\
13500 & =3^{3} \cdot 2^{2} \cdot 5^{3}
\end{aligned}
$$

(3,2 and 5 are prime numbers, only divisible by themselves and 1)
Suppose now we want to solve the simple equation $x+8=4$
one reaction: has no answer alternative: postulate " 4 " to be the solution
\rightarrow negetive numbers
Altogether, we obtain the integers:

$$
\mathbb{Z}=\{\cdots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}
$$

Note: the number 0 is defined as the solution to the equation $x+4=4$
Consider now the equation:

$$
3 x+2=4
$$

no integer is a solution!
\rightarrow solution leads to fractional or "rational" numbers:

$$
\mathbb{Q}=\left\{\begin{array}{l}
\text { all numbers of the form } \frac{p}{q}, \\
\text { where } p \text { and } q \text { are integers and } q \neq 0
\end{array}\right\}
$$

Notation: $\frac{1}{2}=0.5$ (decimal fractions)

$$
\text { for example } \begin{aligned}
& 27+\frac{5}{10}+\frac{3}{100}+\frac{2}{1000}+\frac{8}{10000} \\
= & 27.5328
\end{aligned}
$$

Let us now move on. Consider

$$
x^{2}=2
$$

observe $1^{2}=1,2^{2}=4$
$\rightarrow x$ should be between 1 and 2 take for example $x=1.5$, then

$$
\begin{aligned}
& (1.5)^{2}=2.25>2 \\
& (1.4)^{2}=1.96<2
\end{aligned}
$$

\rightarrow obtain a sequence

$$
1,2, \frac{3}{2}, \frac{7}{5}, \frac{141}{100}, \frac{71}{50}, \frac{707}{500}, \cdots
$$

At some point in history it was realized:
no rational number solves the equation $x^{2}=2$!
Very important, will give a proof later
For now: postulate the solution to be $\sqrt{2}$ "irrational number" "root" of 2
other irrational numbers: $\sqrt{97}$,

$$
\sqrt[5]{2 \sqrt{97}}-\frac{5}{3}+\sqrt[3]{2+\sqrt{52}}
$$

Note:
i) Not every root is irrational!
for example, $\sqrt{4}=2, \sqrt{\frac{9}{25}}=\frac{3}{5}$ need to check in each case!
ii) Not all irrational numbers arise as roots of rationals ar combinations thereof! famous example: π
The collection of all integers, rationals. and irrationals are called "real numbers" and denoted by \mathbb{R}.
geometric visualization:
 rational and irrational numbers

Between any two rational numbers, you can always find another:

In fact, there are infinitely many!
We say: the rational numbers are "densely" spread along the line
Where are the the irrational numbers?
"dense" \longrightarrow "continuous
Will define carefully what the difference is later on.
Let us now move an. Consider the equation

$$
x^{2}+1=0
$$

\rightarrow need to find a number whose square is -1 !
sounds impossible!
\rightarrow postulate the number i (imaginary) such that $i^{2}=-1$
Have arrived at the "complex numbers":

$$
\begin{aligned}
& a+i b \\
& \text { real numbers }
\end{aligned}
$$

\rightarrow denoted by C :

Complex numbers are "algebraically complete": any "polynomial equation", such as

$$
x^{5}-5 x^{4}+30 x^{3}-50 x^{2}+55 x-21=0
$$

can be solved with complex numbers!

Some historical comments:
Ancient Greeks represented numbers with help of pebbles:

even numbers
(two identical rows)

$$
0000000
$$

odd numbers (if arranged in two identical rows, always leaves a separate pebble)
addition is done by regrouping the pebbles
\rightarrow sum of even numbers is even sum of an even number of odd numbers is even.
Triangular, square, and oblong numbers:

ratios and proportions:
the pairs 2,3 and 4,6 are in proportion
\rightarrow modern statement: $\frac{2}{3}=\frac{4}{6}$
But for ancient Greeks:

A ratio was for them not a number, but a way to compare numbers.
(2 to 3 is like 4 to 6)
There was no concept of adding or subtracting them like we do with modern ratios
In commensurability:
Consider the segments $A B$ and $A C$:

$A B$ is "measured" in terms of r, (units of $A C$ is "measured" in terms of s. measurement) Now let's imagine we want to measure
with a common unit t.
\longrightarrow Two lengths are "commensurable" if they can be measured with the same unit t.
Next, let's imagine we want to measure sides and the diagonal of a square with the same unit:

assign $|A B|=1$
then $|A C|=\sqrt{2}$
$\rightarrow A B$ and $A C$ are "incommensurable"!
Otherwise, $|A B|=t \cdot n,|A C|=t \cdot m, n, m \in \mathbb{N} \mid$ and $\frac{|A B|}{|A C|}=\frac{t \cdot n}{t \cdot m}=\frac{n}{m} \in \mathbb{Q}$
But we know $\sqrt{2} \notin \mathbb{Q}$!
But how do we know this?
Was discovered by Pythagoveans of ancient Greece!

Let's have a look at their proof:

Assume now that the segments $D H$ and $D B$ are commensurable, ie.

$$
\begin{aligned}
& |D H|=m \cdot t \text { and } n \text { and } m \\
& |D B|=n \cdot t \text { coprime } \\
& \text { (have no common } \\
& \text { facts) }
\end{aligned}
$$

Then DBHI and AGFE represent square numbers, ie. area $(D B H I)=n^{2}$, $\operatorname{area}(A G F E)=m^{2}$, and in addition $m^{2}=2 n^{2}$ $\rightarrow m^{2}$ is even $\rightarrow m$ is even
$\longrightarrow m^{2}$ can be divided into four $\rightarrow \operatorname{area}(A B C D)=k$ (where $k \cdot 4=m^{2}$) But then area $(D B H I)=2 \cdot \operatorname{area}(A B C D)$

Hence DBHI represents a square number that is even $\rightarrow n$ is even
η contractiction (n and m, were co-prime!)
Hence n and m are incommensurable!
81.2 Axiomatic approach
assume fundamental laws (axioms)
\rightarrow derive everything else
3 classes of axioms:
A) The field axioms (describe laws like $+, \cdot,-1$)
B) Ordering axioms (describe $<, \leq, \geq, \geq$)
C) Completeness axiom (describes difference between \mathbb{Q} and \mathbb{R})
A) Field axioms
\mathbb{R} is a "set". On this set there are two operations:.
1): $\left.\begin{array}{ll}(a, & b \\ \mathbb{R}^{\lambda} & \underset{\mathbb{R}}{ }\end{array}\right) \longmapsto(a+b) \in \mathbb{R}$
2): $(a, b) \longmapsto(a \cdot b) \in \mathbb{R}$
satisfying the following axioms

Remark:
i) A set satisfying these axioms is called a field. \mathbb{R} is an example of a field.

There are other fields, e.g.

$$
K=\{0,1\}
$$

with the operations

$$
\begin{array}{l|l}
0+0=0 & 0 \cdot 0=0 \\
0+1=1 & 0 \cdot 1=0 \\
1+0=1 & 1 \cdot 0=0 \\
1+1=0 & 1 \cdot 1=1
\end{array}
$$

ii) For a there exists exactly one b with $a+b=0$. Suppose there is b^{\prime} with $a+b^{\prime}=0$, then

$$
\begin{array}{ll}
b^{\prime}=b^{\prime}+0 & \text { neutr. }+ \\
b^{\prime}=b^{\prime}+(a+b) & \\
b^{\prime}=\left(b^{\prime}+a\right)+b & \text { Assoc. }+ \\
b^{\prime}=\left(a+b^{\prime}\right)+b & \text { Comm. }+ \\
b^{\prime}=0+b & \\
b^{\prime}=b+0 & \text { Comm. }+ \\
b^{\prime}=b & \text { neutr. }+
\end{array}
$$

This element is denoted by $-a$:

$$
a+(-b)=a-b
$$

\rightarrow defines subtraction and difference
iii) For each $a \neq 0, \exists$ with $a \cdot b=1$ (analogous to ii)) notation a^{-1} or $\frac{1}{a}$
$a \cdot\left(b^{-1}\right)=\frac{a}{b} \rightarrow$ defines quotient and division

